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Methods have been developed for Mendelian randomization that can obtain
consistent causal estimates while relaxing the instrumental variable assump-
tions. These include multivariable Mendelian randomization, in which a genetic
variant may be associated with multiple risk factors so long as any association
with the outcome is via the measured risk factors (measured pleiotropy), and the
MR-Egger (Mendelian randomization-Egger) method, in which a genetic vari-
ant may be directly associated with the outcome not via the risk factor of interest,
so long as the direct effects of the variants on the outcome are uncorrelated with
their associations with the risk factor (unmeasured pleiotropy). In this paper,
we extend the MR-Egger method to a multivariable setting to correct for both
measured and unmeasured pleiotropy. We show, through theoretical arguments
and a simulation study, that the multivariable MR-Egger method has advan-
tages over its univariable counterpart in terms of plausibility of the assumption
needed for consistent causal estimation and power to detect a causal effect when
this assumption is satisfied. The methods are compared in an applied analysis to
investigate the causal effect of high-density lipoprotein cholesterol on coronary
heart disease risk. The multivariable MR-Egger method will be useful to anal-
yse high-dimensional data in situations where the risk factors are highly related
and it is difficult to find genetic variants specifically associated with the risk fac-
tor of interest (multivariable by design), and as a sensitivity analysis when the
genetic variants are known to have pleiotropic effects on measured risk factors.
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1 INTRODUCTION

Mendelian randomization (MR) uses genetic variants as instrumental variables to estimate the causal effect of a risk
factor on an outcome using observational data.1,2 Increases in the scale of genome-wide association studies have led
to large numbers of genetic variants that are associated with candidate risk factors being discovered.3 If the variants
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explain additional variability in the risk factor then using multiple variants in a MR analysis will increase power to detect
a causal effect.4,5 A pleiotropic genetic variant is associated with multiple risk factors; such a variant is not a valid instru-
mental variable and its inclusion in an (univariable) MR analysis may result in biased causal estimates and inappropriate
inferences.6 As more variants are used in an MR analysis, the chance of including a pleiotropic variant increases.

For some sets of risk factors, including lipid fractions, several risk factors have common genetic predictors. Although
such genetic variants are pleiotropic, they can be used to estimate causal effects in a multivariable MR framework.7 In
multivariable MR, the instrumental variable assumptions are extended to allow a genetic variant to be associated with
multiple risk factors, provided all associated risk factors are included in the analysis. Alternatively, when genetic variants
are suspected to violate the instrumental variable assumptions through unknown pleiotropic pathways, methods have
been developed to estimate consistent causal effects under weaker assumptions. These include the weighted median and
MR-Egger methods.8,9 The extension of MR-Egger to a multivariable setting has been implemented by Helgadottir et al
as part of a sensitivity analysis in their applied work investigating the effect of lipid fractions on coronary heart disease
(CHD) risk.10 However, there remains several methodological issues relating to the implementation of the method, and
the assumptions required.

In this paper, we expand univariable MR-Egger to the multivariable setting. In Section 2, we introduce the conventional
and MR-Egger methods in both univariable and multivariable contexts. We provide an example analysis using published
data on lipid fractions and CHD risk (Section 3), and compare results from the different MR methods in a simulation study
(Section 4). Finally (Section 5), we discuss the results of the paper and the implications for applied practice. Software code
for implementing all of the methods used in this paper is provided in the Web Appendix.

2 METHODS

Initially, we consider the causal effect of a risk factor X on an outcome Y using genetic variants Gj (j = 1, … , J)
that are assumed to be uncorrelated (not in linkage disequilibrium). Then, we expand to consider multiple risk factors
X1,X2, … ,XK. Increasingly, MR investigations are implemented using summarized data from consortia to leverage their
large sample sizes, thereby improving the precision of causal estimates.11 We therefore assume that summarized data are
available on the associations of each genetic variant with the risk factor (or with each risk factor for the multivariable
setting) and with the outcome: the beta-coefficients (𝛽Xj , 𝛽Yj ) and their standard errors (se(𝛽Xj ), se(𝛽Yj)) from univariable
regression on each variant Gj in turn. We additionally assume that the associations of genetic variants with the risk factor
and the outcome, and the causal effect of the risk factor on the outcome, are linear and homogeneous across the popu-
lation; these assumptions are discussed in detail elsewhere.12 To distinguish between the parameters from the different
methods considered, we use the following subscript notation: UI (“univariable inverse variance weighted (IVW)”); UE
(“univariable MR-Egger”); MI (“multivariable IVW”); and ME (“multivariable MR-Egger”).

2.1 Univariable Mendelian randomization
In a univariable MR analysis, each genetic variant must satisfy the following criteria to be a valid instrumental variable
(IV):

• IV1: The variant is associated with the risk factor X,
• IV2: The variant is independent of all confounders U of the risk factor-outcome association, and
• IV3: The variant is independent of the outcome Y conditional on the risk factor X and confounders U.13

These assumptions imply that the genetic variant should not have an effect on the outcome except via the risk factor.
Under linearity assumptions, the association between the genetic variant and the outcome can be decomposed into an
indirect effect via the risk factor and a direct effect:

𝛽Yj = 𝛼j + 𝜃𝛽Xj , (1)

where 𝜃 is the causal effect of the risk factor on the outcome. Genetic variant j is pleiotropic if 𝛼j ≠ 0, and 𝛼j is the direct
effect of the genetic variant on the outcome. Figure 1 contains a direct effect 𝛼j via an independent pathway, which violates
the IV3 assumption.

With a single genetic variant, G1 say, the causal estimate is 𝛽Y1∕𝛽X1 .14 This is a consistent estimate of the causal effect
𝜃 when 𝛼1 = 0. With multiple genetic variants, the inverse-variance weighted (IVW) estimate is the weighted average of
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FIGURE 1 Causal directed acyclic graph illustrating univariable Mendelian randomization assumptions with potential violation of IV3 by
a pleiotropic effect indicated by a dotted line. The genetic effect of Gj on X is 𝛽Xj

, the direct (pleiotropic) effect of Gj on Y via an independent
pathway is 𝛼j (representing the potential violation of the IV3 assumption), and the causal effect of the risk factor X on the outcome Y is 𝜃. U
represents the set of variables that confound the association between X and Y

these causal estimates,15 using the inverse of their approximate variances se(𝛽Yj )
2∕𝛽2

Xj
as weights:

�̂�UI =
∑

j 𝛽Yj𝛽Xj se(𝛽Yj )
−2∑

j 𝛽
2
Xj

se(𝛽Yj )−2
. (2)

This estimate can also be obtained from individual-level data using the 2-stage least squares method.16 Alternatively,
the causal effect of the risk factor on the outcome can be estimated using a weighted linear regression of the genetic
association estimates,17 with the intercept set to zero:

𝛽Yj = 𝜃UI𝛽Xj + 𝜖UIj , weights = se(𝛽Yj)
−2. (3)

The above weighted regression model, where the residual standard error is set to one, is equivalent to performing a
fixed-effect meta-analysis of the variant-specific causal estimates.18 Under a multiplicative random effects model, the
residual standard error can be greater than one, allowing for heterogeneity in the causal estimates. The point estimate from
the fixed and random effect models will be the same, but the standard error of the causal effect from the multiplicative
random effects model will be larger if there is heterogeneity between the causal estimates. Throughout this paper, we
apply a multiplicative random effects model to all the analyses.

The MR-Egger estimate is obtained using the same regression model as Equation 2, but allowing the intercept to be
estimated9:

𝛽Yj = 𝜃0UE + 𝜃UE𝛽Xj + 𝜖UEj , weights = se(𝛽Yj)
−2. (4)

If the genetic variants are not pleiotropic, then the intercept term should tend to zero as the sample size increases, and
the MR-Egger estimate (�̂�UE) and the IVW estimate (�̂�UI) are both consistent estimates of the causal effect. Additionally,
if the genetic variants are pleiotropic but the direct effects 𝜶 (bold symbols represent vectors across the j genetic variants)
are independent of the associations of the variants with the risk factor 𝜷X (known as the InSIDE assumption—Instrument
Strength Independent of Direct Effect), then the MR-Egger estimate will be a consistent estimate of 𝜃.9,19

Under the InSIDE assumption, the intercept term �̂�0UE can be interpreted as an estimate of the average direct effect of
the genetic variants.8 If the average direct effect is zero (referred to as “balanced pleiotropy”), and the InSIDE assumption
is satisfied, the intercept term should tend to zero as the sample size increases, and the MR-Egger estimate (�̂�UE) and the
IVW estimate (�̂�UI) are both consistent estimates of the causal effect. If the intercept term differs from zero, then either
the InSIDE assumption is violated or the average direct effect differs from zero (referred to as “directional pleiotropy”);
this is a test of the validity of the instrumental variable assumptions (the MR-Egger intercept test).

2.2 Multivariable Mendelian randomization
In a multivariable MR analysis, each genetic variant must satisfy the following criteria:

• IV1(M): The variant is associated with at least one of the risk factors Xk,
• IV2(M): The variant is independent of all confounders U of each of the risk factor-outcome associations, and
• IV3(M): The variant is independent of the outcome Y conditional on the risk factors Xk and confounders U.7
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FIGURE 2 Causal directed acyclic graph illustrating multivariable Mendelian randomization assumptions for a set of genetic variants Gj,
3 risk factors X1, X2, and X3, and outcome Y. The genetic effect of Gj on Xk is 𝛽Xkj

, the direct (pleiotropic) effect of Gj on Y is 𝛼′
j , and the causal

effect of the risk factor Xk on the outcome Y is 𝜃k. Uk represents the set of variables that confound the associations between Xk and Y

Now, the association of the genetic variants with the outcome can be decomposed into indirect effects via each of the
risk factors and a residual direct effect 𝛼′

j . Assuming there are 3 risk factors and all relationships are linear:

𝛽Yj = 𝛼′
j + 𝜃1𝛽X1j + 𝜃2𝛽X2j + 𝜃3𝛽X3j , (5)

where 𝜃k is the causal effect of the risk factor k on the outcome (Figure 2). We assume that the risk factors do not have
causal effects on each other; we later relax this assumption and allow for causal effects between the risk factors.

As in the univariable setting, causal estimates of the effect of each risk factor on the outcome can be obtained from
individual-level data using the 2-stage least squares method.7 The same estimates can also be obtained using multivari-
able weighted linear regression of the genetic association estimates, with the intercept set to zero (referred to as the
multivariable IVW method)20:

𝛽Yj = 𝜃1MI𝛽X1j + 𝜃2MI𝛽X2j + 𝜃3MI𝛽X3j + 𝜖MIj , weights = se(𝛽Yj )
−2. (6)

We propose the natural extension to multivariable MR-Egger using the same regression model but allowing the intercept
to be estimated:

𝛽Yj = 𝜃0ME + 𝜃1ME𝛽X1j + 𝜃2ME𝛽X2j + 𝜃3ME𝛽X3j + 𝜖MEj , weights = se(𝛽Yj)
−2. (7)

2.3 Assumptions for multivariable MR-Egger
We assume that the causal effect of risk factor 1 (𝜃1) is of interest and provide the assumptions necessary for the MR-Egger
estimate of 𝜃1 to be consistent. If all of the causal effects are to be interpreted, then these assumptions must apply for each
risk factor.

If the 𝜷X𝟏
parameters are independent of the 𝜷Xk

parameters for all k = 2, 3, … ,K, then the InSIDE assumption for
multivariable MR-Egger is satisfied if the direct effects of the genetic variants 𝜶′ are independent of 𝜷X𝟏

. More formally,
we require:

𝜷X𝟏
⟂⟂ 𝜶′, if 𝜷X𝟏

⟂⟂ 𝜷X𝟐
, … , 𝜷XK

, (8)

for the estimate of 𝜃1 from multivariable MR-Egger to be consistent. If the InSIDE assumption is satisfied, then the
weighted covariance of 𝜷X𝟏

and 𝜶′ (covw(𝜶′,𝜷X𝟏
)) will tend to zero as the number of genetic variants J tends to infinity.

The estimate of 𝜃1 from multivariable MR-Egger when the 𝜷X𝟏
parameters are independent of 𝜷Xk

for all k = 2, 3, … ,K is

�̂�1ME =
covw(�̂�Y , �̂�X𝟏

)

varw(�̂�X𝟏
)

N→∞
−−−→

covw(𝜷Y , 𝜷X𝟏
)

varw(𝜷X𝟏
)

= 𝜃1 +
covw(𝜶′,𝜷X𝟏

)
varw(𝜷X𝟏

)
, (9)

which is equal to 𝜃1 if the InSIDE assumption is satisfied, where covw and varw represent the weighted covariance and
weighted variance using the inverse-variance weights se(𝛽Yj)−2:
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covw(𝜶′,𝜷X𝟏
) =

∑
j (𝛼′

j − 𝛼′w)(𝛽X1j − 𝛽X1w)se(𝛽Yj)−2∑
j se(𝛽Yj)−2

varw(𝜷X𝟏
) =

∑
j (𝛽X1j − 𝛽X1w)2se(𝛽Yj)−2∑

j se(𝛽Yj)−2

𝛼′w =

∑
j 𝛼

′
j se(𝛽Yj)−2∑

j se(𝛽Yj)−2

𝛽X1w =
∑

j 𝛽X1j se(𝛽Yj)−2∑
j se(𝛽Yj)−2

.

(10)

If the 𝜷X𝟏
parameters are correlated with at least one of the sets of 𝜷Xk

parameters (k = 2, 3, … ,K), then the InSIDE
assumption is required to hold for 𝜷X𝟏

and for all of the 𝜷Xk
parameters that are correlated with 𝜷X𝟏

. More formally, we
require:

𝜷Xk
⟂⟂ 𝜶′, for all 𝜷Xk

correlated with 𝜷X𝟏
(including 𝜷X𝟏

itself). (11)

For example, if k = 2, and 𝜷X𝟏
is correlated with 𝜷X𝟐

, we require both of the weighted covariances of 𝜶′ with 𝜷X𝟏
and

𝜷X𝟐
to be zero to produce a consistent estimate of 𝜃1. The estimate of 𝜃1 from multivariable MR-Egger with 2 risk factors

where 𝜷X𝟏
and 𝜷X𝟐

are correlated is

�̂�1ME =
covw(�̂�Y , �̂�X𝟏

)varw(�̂�X𝟐
) − covw(�̂�Y , �̂�X𝟐

)covw(�̂�X𝟏
, �̂�X𝟐

)

varw(�̂�X𝟏
)varw(�̂�X𝟐

) − covw(�̂�X𝟏
, �̂�X𝟐

)2

N→∞
−−−→

covw(𝜷Y , 𝜷X𝟏
)varw(𝜷X𝟐

) − covw(𝜷Y ,𝜷X𝟐
)covw(𝜷X𝟏

, 𝜷X𝟐
)

varw(𝜷X𝟏
)varw(𝜷X𝟐

) − covw(𝜷X𝟏
,𝜷X𝟐

)2

= 𝜃1 +
covw(𝜶′, 𝜷X𝟏

)varw(𝜷X𝟐
) − covw(𝜶′, 𝜷X𝟐

)covw(𝜷X𝟏
,𝜷X𝟐

)
varw(𝜷X𝟏

)varw(𝜷X𝟐
) − covw(𝜷X𝟏

, 𝜷X𝟐
)2 ,

(12)

which is equal to 𝜃1 if the InSIDE assumption holds with respect to 𝜷X𝟏
and 𝜷X𝟐

. As more risk factors with correlated sets
of association parameters with 𝜷X𝟏

are included in the multivariable MR-Egger model, additional terms will be added to
the bias term in Equation 12, and the InSIDE assumption must hold for these additional risk factors to obtain a consistent
estimate of 𝜃1.

The variance of the multivariable MR-Egger estimate �̂�1ME will be heavily influenced by the denominator in the bias
term of Equation 12. As 𝜷X𝟏

and 𝜷X𝟐
become more highly correlated, the standard error of the causal estimate �̂�1ME will

increase, and in some circumstances, the estimate from multivariable MR-Egger will be less precise than the estimate from
univariable MR-Egger. The precision of the causal estimates from multivariable MR-Egger and univariable MR-Egger is
discussed further in the Web Appendix.

2.4 Advantages of multivariable MR-Egger and comparison with univariable MR-Egger
The bias for the causal estimate from univariable MR-Egger �̂�UE depends on the weighted covariance between 𝜶 and
𝜷X𝟏

, where

𝛼j = 𝛼′
j +

K∑
i=2

𝜃i𝛽Xij . (13)

The expression in Equation 13 follows from the multivariable framework outlined in Equation 5, where the direct
effect for univariable MR-Egger has been decomposed into the residual direct effect 𝛼′

j of multivariable MR-Egger and the
indirect effects via each risk factor. The residual direct effect 𝛼′

j will be altered with each additional risk factor included in
the multivariable MR-Egger model. If these additional risk factors are causally associated with the outcome (𝜃k ≠ 0), then
𝛼′

j will consist of fewer components. It seems likely that the InSIDE assumption would be easier to satisfy for multivariable
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MR-Egger than its univariable counterpart as the direct effect for univariable MR-Egger consists of unmeasured and
measured pleiotropy.

If the 𝜷X𝟏
parameters are independent of the 𝜷Xk

parameters for all k = 2, 3, … ,K, then the second term in Equation 13
(the measured direct effect) does not contribute to the value of covw (𝜶, 𝜷X𝟏

). Under this scenario, bias for the univari-
able and multivariable MR-Egger estimates depends on the same covariance term covw(𝜶′,𝜷X𝟏

). As a consequence, the
estimates of the causal effects from univariable MR-Egger �̂�UE and multivariable MR-Egger �̂�1ME will be asymptotically
the same. In this case, multivariable MR-Egger may improve precision of the causal estimate but will not affect the
asymptotic bias.

When the 𝜷X𝟏
parameters are correlated with at least one of the sets of 𝜷Xk

parameters for k = 2, 3, … ,K, the second
term in Equation 13 now contributes to the value of covw (𝜶,𝜷X𝟏

). The InSIDE assumption for univariable MR-Egger will
therefore be automatically violated as the weighted covariance between 𝜶 and 𝜷X𝟏

will not equal zero, resulting in biased
causal estimates of 𝜃1. If the InSIDE assumption holds for multivariable MR-Egger, and 𝜷Xk

are included in the analysis
model, then �̂�1ME will still be a consistent estimate of 𝜃1. Hence, in this case, multivariable MR-Egger should result in
reduced bias compared with univariable MR-Egger.

2.5 Orientation of the genetic variants
Genetic associations represent the average change in the risk factor or the outcome per additional copy of the reference
allele. There is no biological rationale why associations should be expressed with respect to either the major (wildtype) or
the minor (variant) allele. In the univariable and multivariable IVW methods, the estimate is not affected by the choice of
orientation, as the intercept is fixed at zero. However, in the univariable and multivariable MR-Egger methods, changing
the orientation of the variant affects the intercept term and the causal estimate as the orientation affects the definition
of the pleiotropy terms 𝛼j and 𝛼′

j . Consequently, for each choice of orientation, there is a different version of the InSIDE
assumption.

To ensure that the MR-Egger analysis does not depend on the reported reference alleles, Bowden et al suggested the
genetic variants in univariable MR-Egger be orientated so the direction of association with the risk factor is either positive
for all variants or negative for all variants.9 However, this may not be possible for multivariable MR-Egger as the same
reference allele must be used for associations with each risk factor and with the outcome. We suggest that the variants
should be orientated with respect to their associations with the risk factor of primary interest, although we would recom-
mend a sensitivity analysis considering different orientations if multiple risk factors are of interest. If the genetic variants
are all valid instruments, then directional pleiotropy should not be detected with respect to any orientation.

3 EXAMPLE: CAUSAL EFFECT OF HDL- C ON CHD RISK

The effects of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyc-
erides on the risk of coronary heart disease (CHD) have been investigated by numerous MR studies.21 For HDL-C,
univariable MR suggested a causally protective role against CHD risk, whereas univariable MR-Egger provided no evi-
dence of a causal effect and the test for directional pleiotropy was statistically significant at the 5% level.8 A null causal
effect for HDL-C was also reported from a multivariable MR analysis that included LDL-C and triglycerides using the
multivariable IVW method,7 although a small but protective causal effect was estimated in a further multivariable MR
analysis using a wider range of 185 genetic variants.22

We investigate the causal effect of HDL-C on CHD risk further using the multivariable MR-Egger method. We con-
sider the 185 genetic variants having known association with at least one of HDL-C, LDL-C, and triglycerides at GWAS
significance in 188 578 participants reported by the Global Lipids Genetics Consortium.23 The point estimates for the asso-
ciations between these genetic variants and lipids were taken from Do et al.24 The CARDIoGRAMplusC4D consortium
consisting of 60 801 cases and 123 504 controls was used to obtain the estimates of the association between the variants and
CHD risk.25 The IVW and MR-Egger methods were applied to the data under univariable and multivariable frameworks
as described in Section 2. For the univariable IVW and MR-Egger methods, the models were fitted using 2 sets of variants:
firstly using all 185 variants; and secondly using all variants associated with HDL-C at GWAS level of significance. The
genetic variants were orientated with respect to the risk increasing allele for HDL-C. These analyses differ from those
provided in Burgess et al and Do et al as they use summarized data from different versions of the CARDIoGRAMplusC4D
study22,24; here, we use associations from the 2015 data release.25
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TABLE 1 Log causal odds ratios (95% confidence intervals) for coronary heart disease per standard deviation increase in
HDL-C, with 2-sided P-values. Estimates of the intercept are given in univariable and multivariable MR-Egger

Causal Estimate MR-Egger Intercept Test
�̂�HDL-C (CI) se(�̂�HDL-C) P-value �̂�0E se(�̂�0E) P-value

Univariable IVW
All variants −0.130 (−0.227, −0.033) 0.049 0.009 - - -
Reduced set of variantsa −0.114 (−0.211, −0.017) 0.049 0.022 - - -

Univariable MR-Egger
All variants −0.016 (−0.138, 0.106) 0.062 0.800 −0.007 0.002 0.004
Reduced set of variantsa 0.067 (−0.070, 0.204) 0.069 0.332 −0.012 0.004 0.001

Multivariable IVW −0.039 (−0.123, 0.045) 0.042 0.359 - - -
Multivariable MR-Egger 0.036 (−0.063, 0.134) 0.050 0.477 −0.005 0.002 0.008

Abbreviations: CI, confidence interval; HDL-C, high-density lipoprotein cholesterol; IVW, inverse-variance weighted; MR, Mendelian randomization;
SE, standard error.
a95 variants associated with HDL-C at a genome-wide level of significance (P-value< 5 × 10−8).

TABLE 2 Causal log odds ratios (95% confidence intervals) for coronary heart disease per standard deviation increase in
HDL-C, LDL-C, and triglycerides from multivariable IVW and multivariable MR-Egger. Estimates from multivariable MR-Egger
are presented from 3 models where the reference allele is the risk increasing allele for HDL-C, LDL-C, or triglycerides. Estimates
of the intercept are given for multivariable MR-Egger

Causal Estimates MR-Egger Intercept
�̂�HDL-C �̂�LDL-C �̂�TG �̂�0E

Multivariable IVW −0.039 (−0.123, 0.045) 0.375 (0.292, 0.457) 0.173 (0.063, 0.283) -
Multivariable MR-Egger
Orientation with respect toa:
HDL-C 0.036 (−0.063, 0.134) 0.378 (0.297, 0.458) 0.136 (0.024, 0.247) −0.005 (−0.009, −0.001)
LDL-C −0.034 (−0.118, 0.049) 0.420 (0.318, 0.522) 0.194 (0.081, 0.308) −0.003 (−0.007, 0.001)
TG −0.018 (−0.102, 0.066) 0.350 (0.267, 0.433) 0.083 (−0.045, 0.211) 0.005 (0.001, 0.009)

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MR, Mendelian randomization; TG,
triglycerides.
aAlleles orientated for all genetic associations with respect to the risk increasing allele for HDL-C, LDL-C, or triglycerides.

The univariable IVW method suggested a significant protective effect of HDL-C for both sets of variants with a causal
odds ratio of 0.88 (95% CI: 0.80-0.97) for all variants (Table 1). This estimate attenuated to the null in the univariable
MR-Egger method (0.98, 95% CI: 0.87-1.11) with evidence of directional pleiotropy (P-value = 0.004). The causal odds
ratios from multivariable IVW (0.96, 95% CI: 0.89-1.05) and multivariable MR-Egger (1.04, 95% CI: 0.94-1.14) had opposite
directions of association, with both analyses indicating that HDL-C is not causally associated with CHD risk. The signifi-
cant result for directional pleiotropy in the multivariable MR-Egger method suggests that LDL-C and triglycerides do not
fully explain the direct effects of the genetic variants on the outcome, suggesting that there is still residual pleiotropy via
other unmeasured risk factors.

3.1 Varying the orientation of the genetic variants
As a sensitivity analysis, the multivariable MR-Egger method was reperformed with the genetic variants orientated with
respect to the risk increasing alleles for LDL-C and triglycerides.

The causal estimates for HDL-C, LDL-C, and triglycerides from multivariable MR-Egger when the variants were ori-
entated with respect to HDL-C, LDL-C or triglycerides are presented in Table 2. Estimates of the MR-Egger intercept are
also provided for the three models. To allow for comparisons between the multivariable methods, the causal estimates
from multivariable IVW are included in Table 2. The causal estimates in bold follow the recommendation outlined in
Section 2.5 that the genetic variants should be orientated with respect to the risk factor-increasing allele for the risk factor
of interest.

All of the causal odds ratios for HDL-C from the multivariable MR-Egger models indicated that HDL-C is not causally
associated with CHD risk. Significant adverse effects of LDL-C on CHD risk were reported from the multivariable IVW
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(1.45, 95% CI: 1.34-1.58) and multivariable MR-Egger (1.52, 95% CI: 1.37-1.69) methods. Orientating the variants with
respect to the risk increasing alleles for HDL-C and triglycerides had little impact on the causal estimates for LDL-C from
multivariable MR-Egger. The multivariable IVW method suggested a significant adverse effect of triglycerides on CHD
risk with a causal odds ratio of 1.19 (95% CI: 1.07, 1.33), this estimate was attenuated to the null in the multivariable
MR-Egger method (1.09, 95% CI: 0.96, 1.23). The causal odds ratios for triglycerides remained significant, however, when
the variants were orientated with respect to HDL-C and LDL-C in the multivariable MR-Egger models.

Since the orientation of the genetic variants affects the interpretation of the direct effect, and the definition of the InSIDE
assumption, the MR-Egger intercept will vary between different orientations. In this example, the MR-Egger intercept
differed from zero when the variants were orientated with respect to HDL-C and triglycerides, yet there was no evidence of
directional pleiotropy or the InSIDE assumption being violated when the variants were orientated with respect to LDL-C.

4 SIMULATION STUDY

To assess the merits of using multivariable MR-Egger over multivariable IVW and univariable MR-Egger in realistic set-
tings, we perform a simulation study. Univariable and multivariable MR-Egger will be compared with respect to the
consistency of the causal estimates and statistical power to detect the causal effect. The setup of the simulation study
corresponds to the applied example in Section 3 and will be considered under 2 broad scenarios: (1) 𝜷Xk

are generated
independently for all k = 1, 2, … ,K; and (2) 𝜷Xk

are correlated for all k = 1, 2, … ,K.
We simulated summarized level data for 185 genetic variants indexed by j = 1, 2, … , J for 3 risk factors (X1, X2, X3) and

an outcome Y from the following data-generating model:

⎛⎜⎜⎝
𝛽X1j

𝛽X2j

𝛽X3j

⎞⎟⎟⎠ ∼ 3

(( 0.08
0.03
−0.05

)
,

(
𝜎1

2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3
𝜌12𝜎1𝜎2 𝜎2

2 𝜌23𝜎2𝜎3
𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3

2

))
𝛽Yj = 𝛼′

j + 𝜃1|𝛽X1j | + 𝜃2𝛽X2j + 𝜃3𝛽X3j + 𝜖j

𝜖j ∼  (0, 1)

𝛼′
j ∼  (𝜇, 0.004).

(14)

The primary objective was to estimate 𝜃1, with the causal effects set to: 𝜃1 = 0 (null causal effect) or 𝜃1 = 0.3 (positive
causal effect); 𝜃2 = 0.1; and 𝜃3 = −0.3. The data were simulated to consider the following four scenarios:

1. No pleiotropy (𝛼′
j = 0 for all j), InSIDE assumption automatically satisfied;

2. Balanced pleiotropy (𝜇 = 0), InSIDE assumption satisfied;
3. Directional pleiotropy (𝜇 = 0.01, 0.05 or 0.1), InSIDE assumption satisfied;
4. Directional pleiotropy (𝜇 = 0.01, 0.05 or 0.1), InSIDE assumption violated.

When the InSIDE assumption for multivariable MR-Egger was satisfied, 𝛼′
j and 𝛽X1j were drawn from independent

distributions, and when it was violated, they were drawn from a multivariate normal distribution with cor(𝜶′,𝜷X𝟏
) = 0.3.

The above 4 scenarios were applied to the simulated data when 𝜷Xk
were generated independently for all k, with the

parameters in the covariance matrix set to: 𝜎2
1 = 0.03; 𝜎2

2 = 0.02; 𝜎2
3 = 0.04; and 𝜌12 = 𝜌13 = 𝜌23 = 0. The 4 scenarios were

repeated when 𝜷Xk
were correlated for all k (𝜌12 = 0.2, 𝜌13 = −0.3, 𝜌23 = 0.1). The mean F-statistics were greater than

200 and I2 statistics greater than 99% in each scenario; values are provided in Web Tables A1 and A2. In total, data were
simulated for 32 different choices of parameters.

To ensure the direction of association between Gj and X1 was the same for all j variants, the absolute value of the
genetic associations with X1 (|𝛽X1j |) were used to generate 𝛽Yj (Equation (14)). It was assumed that 𝛽Xkj (for all k) and 𝛽Yj

had the same reference allele and the genetic variants were uncorrelated. The multivariable IVW, univariable MR-Egger,
and multivariable MR-Egger methods were applied to the simulated datasets. The weights for the multivariable IVW and
multivariable MR-Egger are given by Equation 15, while Equation 16 contains the weights for univariable MR-Egger:

se(𝛽Yj )
−2 = (𝜖j

2 + 𝜎𝛼′
2)−1, (15)

se(𝛽Yj )
−2 = (𝜖j

2 + 𝜎𝛼′
2 + 𝜃2

2𝜎2
2 + 𝜃3

2𝜎3
2)−1. (16)
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4.1 Results
The results from the simulation study using 10 000 simulated datasets are presented in Table 3 (𝜷Xk

generated indepen-
dently) and Table 4 (𝜷Xk

correlated). For each scenario, the mean estimate, the mean standard error, and the statistical
power to detect a null or positive causal effect at a nominal 5% significance level are presented in Tables 3 and 4 for
the multivariable IVW, univariable MR-Egger, and multivariable MR-Egger methods. For univariable and multivariable
MR-Egger, the statistical power of the MR-Egger intercept test is also provided.

𝜷Xk
generated independently∶ In scenarios 1 and 2 (no and balanced pleiotropy), estimates from all methods were

unbiased, and those from the multivariable IVW method were the most precise. In scenarios 3 and 4 (directional
pleiotropy), estimates from the multivariable IVW method were biased, with the magnitude of bias increasing as the
average value of𝜶′ increased from 0.01 to 0.1. In scenario 3 (InSIDE satisfied), estimates from the univariable and mul-
tivariable MR-Egger methods were unbiased, whereas in scenario 4 (InSIDE violated), they were biased. Although the
causal estimates for both multivariable IVW and multivariable MR-Egger were biased under scenario 4, the magnitude
of bias was less for multivariable MR-Egger, with the exception of when 𝛼′

j was generated from  (0.01, 0.004). Preci-
sion and power to detect a causal effect were always better for the multivariable MR-Egger method than univariable

TABLE 3 Performance of multivariable IVW, univariable MR-Egger, and multivariable MR-Egger with respect to �̂�1 for a null
(𝜃1 = 0) and positive (𝜃1 = 0.3) causal effect where 𝜷Xk

are generated independently for all k. All tests were performed at the 5%
level of significance

Multivariable IVW Univariable MR-Egger Multivariable MR-Egger
Mean �̂�1 Power, Mean �̂�1 Power, % Mean �̂�1 Power, %
(mean SE) % (mean SE) Intercept Causal (mean SE) Intercept Causal

Null causal effect: 𝜽1 = 0
1. No pleiotropy, InSIDE satisfied

0.000 (0.045) 3.8 −0.002 (0.158) 9.1 4.7 0.000 (0.084) 3.7 4.1
2. Balanced pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0,0.004) -0.001 (0.100) 4.7 −0.001 (0.187) 7.8 4.7 0.000 (0.165) 4.6 4.6

3. Directional pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0.01,0.004) 0.041 (0.100) 6.7 −0.003 (0.187) 12.2 4.3 −0.002 (0.165) 5.9 4.5

𝛼′
j ∼  (0.05,0.004) 0.210 (0.100) 55.3 0.002 (0.187) 49.2 4.6 0.002 (0.166) 36.3 4.6

𝛼′
j ∼  (0.1,0.004) 0.417 (0.102) 97.4 0.000 (0.187) 91.6 4.3 0.001 (0.165) 88.0 4.6

4. Directional pleiotropy, InSIDE violated

𝛼′
j ∼  (0.01,0.004) 0.074 (0.100) 12.3 0.089 (0.187) 6.7 7.6 0.088 (0.165) 4.3 8.4

𝛼′
j ∼  (0.05,0.004) 0.240 (0.100) 67.2 0.089 (0.187) 34.1 7.8 0.088 (0.165) 21.1 8.8

𝛼′
j ∼  (0.1,0.004) 0.450 (0.101) 98.6 0.088 (0.187) 84.1 7.6 0.088 (0.165) 78.7 8.7

Positive causal effect: 𝜽1 = 0.3

1. No pleiotropy, InSIDE satisfied

0.300 (0.044) 98.9 0.300 (0.157) 9.3 50.1 0.300 (0.084) 4.3 87.3

2. Balanced pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0,0.004) 0.301 (0.100) 84.6 0.303 (0.187) 7.5 38.2 0.302 (0.166) 4.9 46.4

3. Directional pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0.01,0.004) 0.343 (0.100) 91.5 0.300 (0.187) 12.8 36.8 0.299 (0.165) 6.0 45.8

𝛼′
j ∼  (0.05,0.004) 0.509 (0.100) 99.7 0.300 (0.188) 50.6 37.3 0.299 (0.166) 37.1 46.1

𝛼′
j ∼  (0.1,0.004) 0.716 (0.102) 100.0 0.300 (0.187) 91.1 37.1 0.299 (0.166) 87.9 46.1

4. Directional pleiotropy, InSIDE violated

𝛼′
j ∼  (0.01,0.004) 0.374 (0.099) 94.3 0.390 (0.187) 6.6 56.4 0.389 (0.165) 4.6 65.8

𝛼′
j ∼  (0.05,0.004) 0.539 (0.100) 99.8 0.388 (0.187) 34.4 55.6 0.387 (0.165) 21.5 65.5

𝛼′
j ∼  (0.1,0.004) 0.747 (0.101) 100.0 0.383 (0.187) 84.7 55.1 0.384 (0.165) 78.3 65.2

Abbreviations: InSIDE, Instrument Strength Independent of Direct Effect; IVW, inverse-variance weighted; MR, Mendelian randomization; SE,
standard error.
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TABLE 4 Performance of multivariable IVW, univariable MR-Egger, and multivariable MR-Egger with 𝜷Xk
being correlated

for all k

Multivariable IVW Univariable MR-Egger Multivariable MR-Egger
Mean �̂�1 Power, Mean �̂�1 Power, % Mean �̂�1 Power, %
(mean SE) % (mean SE) Intercept Causal (mean SE) Intercept Causal

Null causal effect: 𝜽1 = 0
1. No pleiotropy, InSIDE satisfied

0.000 (0.047) 4.0 0.099 (0.157) 4.3 10.1 0.000 (0.086) 4.4 4.6
2. Balanced pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0,0.004) −0.001 (0.104) 4.7 0.093 (0.187) 4.5 7.4 −0.003 (0.169) 4.6 4.4

3. Directional pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0.01,0.004) 0.043 (0.104) 7.0 0.099 (0.187) 5.8 8.0 0.001 (0.169) 5.9 4.8

𝛼′
j ∼  (0.05,0.004) 0.213 (0.105) 52.7 0.095 (0.187) 33.3 7.6 0.000 (0.169) 37.2 4.5

𝛼′
j ∼  (0.1,0.004) 0.426 (0.107) 96.3 0.096 (0.187) 84.5 7.6 −0.001 (0.169) 89.2 4.6

4. Directional pleiotropy, InSIDE violated

𝛼′
j ∼  (0.01,0.004) 0.062 (0.104) 9.5 0.184 (0.187) 4.6 17.9 0.078 (0.169) 4.7 7.6

𝛼′
j ∼  (0.05,0.004) 0.235 (0.104) 62.1 0.187 (0.187) 20.5 18.3 0.082 (0.169) 22.3 7.5

𝛼′
j ∼  (0.1,0.004) 0.448 (0.106) 97.9 0.181 (0.187) 73.3 17.8 0.077 (0.169) 80.3 7.2

Positive causal effect: 𝜽1 = 0.3
1. No pleiotropy, InSIDE satisfied

0.300 (0.047) 98.7 0.395 (0.158) 4.4 70.8 0.299 (0.087) 3.9 86.2
2. Balanced pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0,0.004) 0.300 (0.104) 81.5 0.399 (0.187) 4.4 58.0 0.301 (0.169) 4.6 44.4

3. Directional pleiotropy, InSIDE satisfied

𝛼′
j ∼  (0.01,0.004) 0.342 (0.104) 89.4 0.395 (0.187) 6.4 57.4 0.301 (0.169) 5.9 44.4

𝛼′
j ∼  (0.05,0.004) 0.513 (0.105) 99.4 0.394 (0.187) 33.0 57.4 0.296 (0.169) 38.0 43.4

𝛼′
j ∼  (0.1,0.004) 0.729 (0.107) 100.0 0.400 (0.187) 83.5 58.2 0.304 (0.169) 88.6 45.5

4. Directional pleiotropy, InSIDE violated

𝛼′
j ∼  (0.01,0.004) 0.365 (0.104) 92.1 0.489 (0.187) 4.2 74.0 0.382 (0.169) 4.6 63.2

𝛼′
j ∼  (0.05,0.004) 0.535 (0.104) 99.7 0.486 (0.187) 20.3 72.9 0.382 (0.169) 21.1 63.2

𝛼′
j ∼  (0.1,0.004) 0.749 (0.106) 100.0 0.488 (0.187) 72.5 73.4 0.381 (0.169) 79.6 62.8

Abbreviations: InSIDE, Instrument Strength Independent of Direct Effect; IVW, inverse-variance weighted; MR, Mendelian randomization; SE,
standard error.

MR-Egger, although the univariable MR-Egger method detected directional pleiotropy more often. The average value
of 𝜶′ had no impact on the degree of bias for univariable or multivariable MR-Egger.
𝜷Xk

correlated∶ Bias for the multivariable IVW method was present in scenarios 3 and 4 only, as in the independently
generated setting. In this setting, the InSIDE assumption for univariable MR-Egger was violated for all 4 scenarios,
resulting in biased point estimates of 𝜃1. However, the multivariable InSIDE assumption was satisfied for scenarios
1, 2, and 3, and so causal estimates from multivariable MR-Egger were unbiased. When the multivariable InSIDE
assumption was violated (scenario 4) the estimates from multivariable MR-Egger were biased, yet the magnitude of
bias was less compared with univariable MR-Egger as |cov(𝜶′,𝜷X𝟏

)| < |cov(𝜶,𝜷X𝟏
)|.

4.2 Causal relationships between the risk factors
The simulations performed in Section 4.1 assumed that the effect of each risk factor on the outcome is not mediated
through another risk factor. There may be circumstances where causal relationships between risk factors are biologically
plausible. Burgess et al illustrated that the multivariable IVW method estimates the direct causal effects (𝜃k) of each risk
factor on the outcome, irrespective of whether causal relationships between the risk factors exist.7
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FIGURE 3 Causal directed acyclic graph illustrating the causal relationships between the 2 risk factors X1 and X2, and outcome Y . The
causal effect of X1 on X2 is 𝛾 , and the direct causal effect of the risk factor Xk on the outcome Y is 𝜃k. The total causal effect of X1 on Y is
𝜃1 + 𝛾𝜃2, consisting of the direct effect (𝜃1) and the indirect effect via X2 (𝛾𝜃2). Uk represents the set of variables that confound the
associations between Xk and Y

In the applied example of the paper, there may also be deterministic dependencies between the risk factors. LDL-C
is rarely measured directly but is estimated from measurements of total cholesterol, triglycerides, and HDL-C via the
Friedewald equation as total cholesterol minus HDL-C minus 0.2 times triglycerides (assuming all measurements in
mg/dL).26 It has previously been shown that the coefficient for LDL-C is the same as the coefficient for non-HDL-C
(calculated as total cholesterol minus HDL-C) in a regression model including HDL-C and triglycerides (see Appendix 2
in the paper by Di Angelantonio et al).27 However, the coefficient for triglycerides will change, as the non-HDL-C measure
contains more triglycerides than the LDL-C measure. Hence, in the case that there are deterministic relationships between
the risk factors, effect estimates may change as the choice of risk factors varies due to their interpretation as direct effects
conditional on other risk factors in the regression model.

We performed additional simulations to investigate the behaviour of the multivariable MR-Egger method when X2 is
causally dependent on X1, and the causal effect of X1 on X2 is 𝛾 (Figure 3). The total causal effect of X1 on Y is 𝜃1 + 𝛾𝜃2,
consisting of the direct effect (𝜃1) and the indirect effect via X2 (𝛾𝜃2). See the Web Appendix for more details on the data
generating model.

4.2.1 Results
The results from the additional simulations are provided in Web Table A3 and Web Table A4. In scenarios where there
was no bias in the original set of simulations, the multivariable IVW and multivariable MR-Egger methods consistently
estimated the direct effect of X1 on Y (𝜃1), while the univariable MR-Egger method consistently estimated the total causal
effect of X1 on Y (𝜃1 + 𝛾𝜃2). Compared to the results in Section 4.1, precision and power to detect a causal effect were
reduced for the multivariable IVW and multivariable MR-Egger methods. This reduction in power was anticipated since
the multivariable models condition on the mediator along a causal pathway, which is known to decrease power to detect
a causal effect.28

5 DISCUSSION

In this paper, we have extended univariable MR-Egger to the multivariable setting and outlined the assumptions required
to obtain consistent causal estimates in the presence of directional pleiotropy. Multivariable MR-Egger should be viewed
as a sensitivity analysis to provide robustness against both measured and unmeasured pleiotropy and to strengthen the
evidence from the original MR analysis. If the causal estimate from multivariable MR-Egger is substantially different
from the estimate obtained in the original analysis, then further investigation into the causal finding and the potential for
pleiotropy is required.

The simulation study has highlighted the benefits of using multivariable MR-Egger over its univariable counterpart.
This is particularly true when the associations of the genetic variants with the risk factor of interest are associated
with genetic associations with at least one of the risk factors (measured pleiotropy). Under this scenario, the InSIDE
assumption for univariable MR-Egger is likely to be violated, leading to biased causal estimates. Multivariable MR-Egger
will, however, produce consistent causal estimates if the InSIDE assumption for multivariable MR-Egger is satisfied.
Although the estimates from univariable and multivariable MR-Egger are asymptotically the same when genetic asso-
ciations with each risk factor are all independent, multivariable MR-Egger should also have greater power to detect a
causal effect when the InSIDE assumption is satisfied. Given these advantages, and the sensitivity of the multivariable
IVW method to directional pleiotropy, we believe that multivariable MR-Egger should be considered as an important
sensitivity analysis for a MR study.
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5.1 Multivariable by design, or multivariable as a sensitivity analysis?
There are 2 possible scenarios where multivariable MR-Egger may be used as a sensitivity analysis: either the primary
analysis is considered to be multivariable by design, or a multivariable framework is only considered as part of the sen-
sitivity analysis. The first case should be motivated by biological evidence where the set of risk factors are known to be
associated with common genetic variants, such as lipid fractions. Under this scenario, multivariable IVW should be used
as the primary analysis method with multivariable MR-Egger providing robustness against directional pleiotropy as a
sensitivity analysis.

In the second scenario, where there is a lack of biological evidence to suggest a multivariable framework, univariable
IVW would generally be considered as the primary analysis method and univariable MR-Egger as the main sensitivity
analysis. However, if the genetic variants are associated with other risk factors, multivariable MR-Egger could also be
used as a sensitivity analysis as its assumptions are more likely to be satisfied and it may have greater power to detect a
causal effect than univariable MR-Egger. An example of the use of multivariable MR as a sensitivity analysis is an MR
study on plasma urate concentrations and CHD risk.29 To account for measured and unmeasured pleiotropic associations
of the genetic variants, the authors performed the multivariable IVW and univariable MR-Egger methods as sensitivity
analyses. This investigation may have benefited from performing the multivariable MR-Egger method to simultaneously
account for both measured and unmeasured pleiotropic associations.

5.2 InSIDE assumption and orientation of genetic variants
The validity of multivariable MR-Egger and its ability to estimate consistent causal effects is dependent upon the InSIDE
assumption being satisfied. While it is not possible to determine whether the InSIDE assumption has been violated, we
believe it is more likely to hold for multivariable MR-Egger then univariable MR-Egger. When the 𝜷X1 parameters are
associated with at least one of the sets of 𝜷Xk

parameters for k = 2, 3, … ,K, the InSIDE assumption for univariable
MR-Egger is automatically violated and causal estimates from the method will be inconsistent. The direct effects of the
genetic variants on the outcome will consist of fewer components for multivariable MR-Egger compared to its univariable
counterpart, making it more plausible that the InSIDE assumption will hold for multivariable MR-Egger.

The recommendation of orientating the genetic variants in multivariable MR-Egger to the risk factor-increasing or risk
factor-decreasing allele for the risk factor of interest may be considered arbitrary. While we accept this limitation, we
would argue that it brings consistency to the results. This recommendation may result in the analysis being performed
up to K times to obtain the causal estimates for all K risk factors. The orientation of the genetic variants will also affect
the interpretation of the direct effect, thereby altering the InSIDE assumption. This may result in the MR-Egger intercept
estimate varying between different orientations. This was seen in the applied example where the intercept term was
non-significant when the alleles were orientated with respect to LDL-C, and significant when orientated with respect to
HDL-C and trigclyercides.

5.3 Linearity and homogeneity assumptions
Throughout this paper, we have assumed linearity and homogeneity (no effect modification) of the causal effects of the risk
factors on the outcome, and of the associations between the genetic variants with the risk factors and with the outcome.
If the assumptions of linearity and homogeneity are violated then the methods discussed in this paper still provide a
valid test for the null hypothesis of whether the risk factor is causally associated with the outcome.12 The causal estimate,
however, would not have a literal interpretation if the assumptions were violated.30 Although linearity and homogeneity
are strong assumptions, the effect of genetic variants on the risk factor and outcome tend to be limited to a small range,
which may make the assumptions of linearity and homogeneity more reasonable in an MR analysis.

The multivariable models have assumed that the risk factors do not have causal effects on each other. The additional
simulation study has illustrated that the multivariable MR-Egger method estimates the direct causal effects of the risk
factors on the outcome, irrespective of whether the risk factors are causally related. There was, however, a reduction in
precision and power to detect the causal effect for multivariable MR-Egger when a causal relationship between the risk
factors was present. Conversely, univariable MR-Egger will produce consistent causal estimates of the total effect if the
InSIDE assumption for univariable MR-Egger is satisfied.
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5.4 Implication for future research
The paper by Helgadottir et al highlights the importance and need to develop sensitivity analyses for multivariable MR.10

This is particularly relevant given the recent advances in high-throughput phenotyping which has led to the introduction
of “-omics” data such as metabolomics, genomics, and proteomics.31 Genome-wide analyses of high-dimensional “-omics”
data are becoming more popular,32,33 yet few MR analyses have been performed using these datasets.21 As summarized
data from large consortia become more accessible, the opportunities to use MR on high-dimensional datasets will only
increase. Methods such as multivariable MR-Egger will be valuable to investigate the causal effects of multiple related
phenotypes with shared genetic predictors.

Bowden et al have shown that uncertainty in the associations between the genetic variants and the risk factor in uni-
variable MR-Egger can lead to attenuation towards the null when a causal effect exists between the risk factor and the
outcome.34 This attenuation is approximately equal to the I2 statistic from meta-analysis of the weighted associations with
the exposure 𝛽Xj se(𝛽Yj)

−1, with standard errors se(𝛽Xj )se(𝛽Yj )
−1.34 Since the mean I2 statistics for the simulation study in

this paper were close to 100%, there was no substantial bias in the causal estimates due to uncertainty in the genetic asso-
ciations for either the univariable or multivariable MR-Egger methods. However, it is unclear whether uncertainty in the
genetic associations with the risk factors would always lead to the attenuation of the causal estimates for the multivariable
MR-Egger method. Further research is required to investigate this.

Throughout the paper, we have assumed that the genetic variants are uncorrelated (not in linkage disequilibrium). This
assumption, and the requirement for further methodological development, is discussed in the Web Appendix.
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